PTP-epsilon, a tyrosine phosphatase expressed in endothelium, negatively regulates endothelial cell proliferation.

نویسندگان

  • L J Thompson
  • J Jiang
  • N Madamanchi
  • M S Runge
  • C Patterson
چکیده

The vascular endothelium is a dynamic interface between the blood vessel and circulating factors and, as such, plays a critical role in vascular events like inflammation, angiogenesis, and hemostasis. Whereas specific protein tyrosine kinases have been identified in these processes, less is known about their protein tyrosine phosphatase (PTP) counterparts. We utilized a RT-PCR/differential hybridization assay to identify PTP-epsilon as a highly abundant endothelial cell PTP. PTP-epsilon mRNA expression is growth factor responsive, suggesting a role for this enzyme in endothelial cell proliferation. Overexpression of PTP-epsilon decreases proliferation by 60% in human umbilical vein endothelial cells (HUVEC) but not in smooth muscle cells or fibroblasts. In contrast, overexpression of PTP-epsilon (D284A), a catalytically inactive mutant, has no significant effect on HUVEC proliferation. These data provide the first functional characterization of PTP-epsilon in endothelial cells and identify a novel pathway that negatively regulates endothelial cell growth. Such a pathway may have important implications in vascular development and angiogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of receptor-type protein tyrosine phosphatase in developing and adult renal vasculature

Renal vascular development is a coordinated process that requires ordered endothelial cell proliferation, migration, intercellular adhesion, and morphogenesis. In recent decades, studies have defined the pivotal role of endothelial receptor tyrosine kinases (RPTKs) in the development and maintenance of renal vasculature. However, the expression and the role of receptor tyrosine phosphatases (RP...

متن کامل

VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation

Vascular endothelial growth factor (VEGF) guides the path of new vessel sprouts by inducing VEGF receptor-2 activity in the sprout tip. In the stalk cells of the sprout, VEGF receptor-2 activity is downregulated. Here, we show that VEGF receptor-2 in stalk cells is dephosphorylated by the endothelium-specific vascular endothelial-phosphotyrosine phosphatase (VE-PTP). VE-PTP acts on VEGF recepto...

متن کامل

Vascular endothelial cell-specific phosphotyrosine phosphatase (VE-PTP) activity is required for blood vessel development.

VE-PTP, a receptor-type phosphotyrosine phosphatase, associates with the tyrosine kinase receptor Tie-2 and VE-cadherin and enhances the adhesive function of the latter. Here, VE-PTP was found to be restricted to endothelial cells, with a preference for arterial endothelium. Mutant mice expressing a truncated, secreted form of VE-PTP lacking the cytoplasmic and transmembrane domains and the mos...

متن کامل

VE-PTP controls blood vessel development by balancing Tie-2 activity

Vascular endothelial protein tyrosine phosphatase (VE-PTP) is an endothelial-specific receptor-type tyrosine phosphatase that associates with Tie-2 and VE-cadherin. VE-PTP gene disruption leads to embryonic lethality, vascular remodeling defects, and enlargement of vascular structures in extraembryonic tissues. We show here that antibodies against the extracellular part of VE-PTP mimic the effe...

متن کامل

Posttranslational regulation of cyclooxygenase by tyrosine phosphorylation in cerebral endothelial cells.

Endothelium-derived cyclooxygenase (COX) products regulate cerebral vascular tone in newborn pigs. Both COX-1 and COX-2 are constitutively expressed in endothelial cells from newborn pig cerebral microvessels. We investigated the role of protein phosphorylation in the regulation of COX activity. The protein tyrosine phosphatase (PTP) inhibitors phenylarsine oxide, vanadate, and benzylphosphonic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 281 1  شماره 

صفحات  -

تاریخ انتشار 2001